

Getting to the Core: 33 Unique Constituents Identified as the **Core Microbiome of Cornus florida**

INTRODUCTION

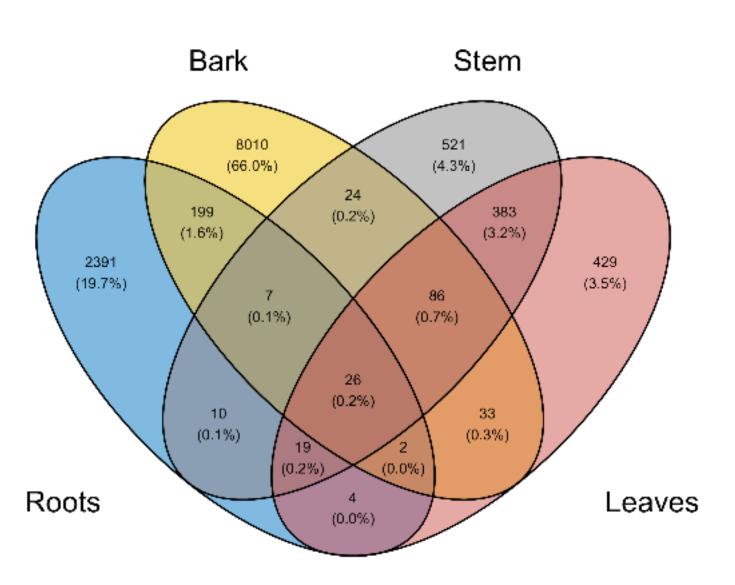


<u>Importance</u> - Dogwood is economically valuable to Tennessee as an ornamental and is ecologically important as a native tree.

Discovering dogwood's core microbiome may contribute to clues about stress resilience and fitness.

<u>The Study</u> - We aim to profile the dogwood microbiome using fungal ITS and prokaryotic 16S marker gene sequences sampled from root, stem, bark, and leaf niches

METHODS


Samples were collected from **20 dogwood trees** growing in Tullahoma, Tennessee in 2019. Four samples collected per tree, one per each niche: roots, stem, bark, leaves.

Scan QR code for GitHub Repository \rightarrow

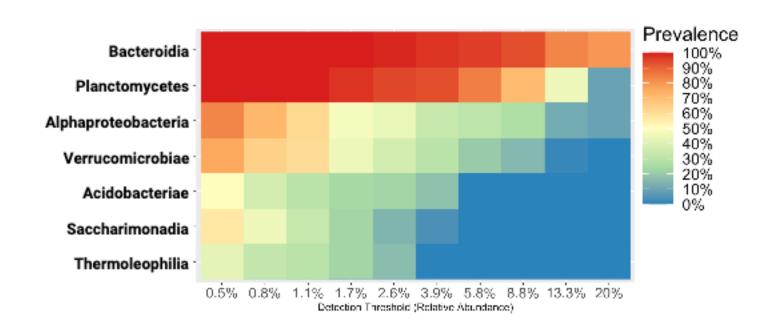
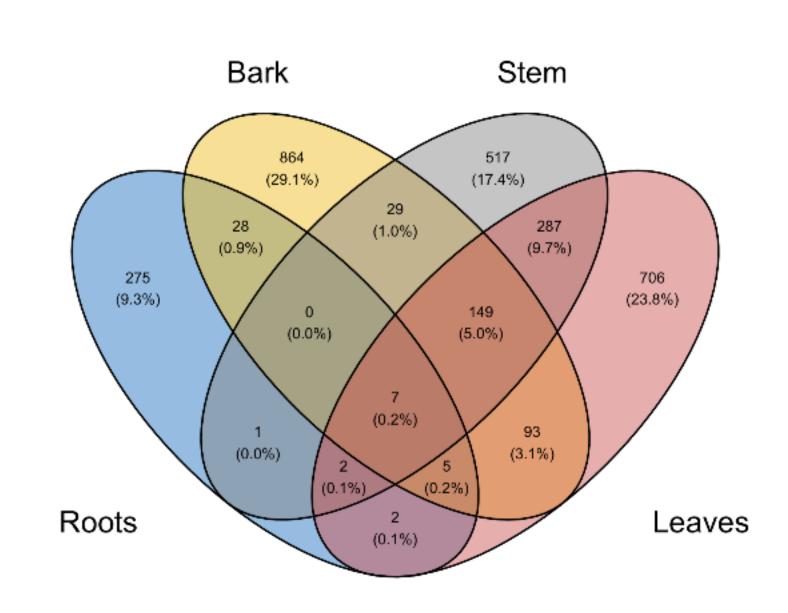
Taylor Sawyer¹*, Isako Di Tomassi²*, Beant Kapoor³, Aaron Onufrak³, Ryan Kuster³, William Klingeman⁴, Jennifer DeBruyn⁵, Melissa Cregger⁶, Meg Staton³, Denita Hadziabdic³ 1. College of Agricultural and Life Sciences, University of Florida | 2. College of Agricultural Sciences, The Pennsylvania State University of Tennessee-Knoxville | 4. Department of Plant Sciences, University of Tennessee-Knoxville | 5. Department of Biosystems Engineering and Soil Sciences Division, Oak Ridge National Laboratory, Oak Ridge

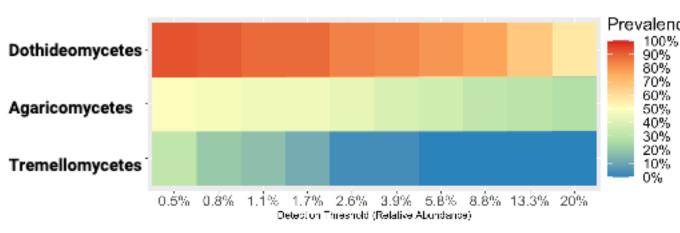
PROKARYOTIC RESULTS

Figure 1: Venn diagram representing the number of bacterial amplicon sequence variants (ASVs) across four dogwood niches, and the intersection of these niches.

Kingdom	Phylum	Class	Core ASV Count	% Samples Containing ASV
Bacteria	Acidobacteriota	Acidobacteriae	2	66%
		Thermoanaerobaculia	1	23%
		Vicinamibacteria	1	33%
	Actinobacteriota	Acidimicrobiia	1	43%
		Thermoleophilia	1	11%
	Bacteroidota	Bacteroidia	1	94%
	Chloroflexi	Chloroflexia	1	27%
		NA	1	54%
	Cyanobacteria	Cyanobacteriia	1	9%
	Dependentiae	Babeliae	1	8%
	Firmicutes	Bacilli	1	5%
	Myxococcota	Myxococcia	1	6%
	Patescibacteria	Parcubacteria	1	5%
		Saccharimonadia	2	9%
	Planctomycetota	Planctomycetes	2	74%
	Proteobacteria	Alphaproteobacteria	4	18%
	Verrucomicrobiota	Verrucomicrobiae	2	9%
Archaea	Crenarchaeota	Nitrososphaeria	1	13%
	Thermoplasmatota	Thermoplasmata	1	14%

Table 1: Data table showing taxonomic levels of the 26 shared prokaryotic ASVs present in the dogwood core microbiome.


Figure 2: Heat map representing the prevalence (percent of each of the total samples that contain the taxa) of each of the most abundant prokaryotic clásses across all samples from all dogwood niches at each specified detection threshold.

niches.

Kingdom	Phylum	Class	Core ASV Count	% Samples Containing ASV
	Ascomycota	Dothideomycetes	4	32%
Fungi	Basidiomycota	Agaricomycetes	1	10%
rungi		Tremellomycetes	1	24%
		NA	1	13%

Table 2: Data table showing taxonomic levels of the seven shared fungal ASVs present in the dogwood core microbiome.

Figure 4: Heat map representing the prevalence (percent of the total samples that contain the taxa) of the most abundant fungal classes across all samples from all dogwood niches at each specified detection threshold.

.Shade and Stopnisek, "Abundance-occupancy distributions to prioritize plant core microbiome membership", (2019). https://doi.org/10.1016/j.mib.2019.09.008. . Callahan, et al. "DADA2: High-resolution sample inference from Illumina amplicon data", (2016). https:/ doi.org/10.1038/nmeth.3869 3.Morgan, et al., "ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughpu equence data", (2009) Pages 2607–2608, https://doi.org/10.1093/bioinformatics/btp450 4.Pagès, et al., "Biostrings: Efficient manipulation of biological strings", (2022). https://bioconductor.org/packages/ 5. Oksanen, et al., "Vegan: Community Ecology Package", (2022). https://CRAN.R-project.org/package=vega 6. McMurdie and Holmes, "phyloseg: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data", (2013). PLoS ONE. 8(4):e61217 7. Lahti, et al., "Tools for microbiome analysis in R", (2017). https://microbiome.github.com/microbiome 8. Wickham, "The Split-Apply-Combine Strategy for Data Analysis", (2011). https://www.jstatsoft.org/v40/i01/ 9. Wickham, Girlich M, "tidyr: Tidy Messy Data," (2022). https://tidyr.tidyverse.org, https://github.com/tidyverse/tidyr. 10. Wickham, "ggplot2: Elegant Graphics for Data Analysis", (2016). https://ggplot2.tidyverse.org 11. Yan, "ggVenn", (2021). https://github.com/yanlinlin82/ggvenn

FUNGAL RESULTS

Figure 3: Venn diagram representing the number of fungal ASVs across four dogwood niches, and the intersections of these four

REFERENCES

CONCLUSION

Dogwood's core microbiome consists of 7 fungal and 26 prokaryotic taxa that have occupancy across all four niches.

These 33 taxa are found in 5 - 94% of the total samples, but are found in at least one sample per niche (roots, stem, bark, and leaves).

Core taxa **abundance** varies widely.

Heatmaps show that many have less than 0.5% relative abundance, meaning that that taxa accounts for less than 0.5% of the total microbes present in the samples.

FUTURE WORK

 Further exploration to find potential functional roles of core microbes

 Incorporation of datasets from a broader geographic region beyond Tennessee (eastern United States) to refine the results of this study

ACKNOWLEDGEMENTS

This work was supported by the Bioinformatics, Genetics, and Genomics Data REEU, funded through the United States Department of Agriculture, National Institute of Food and Agriculture, Agriculture and Food Research Initiative grant 2019-67032-29309. The authors gratefully acknowledge the help provided by the UT Entomology and Plant Pathology Laboratory and its respective faculty, with special thanks to Dr. Kimberly Gwinn.

EXPLOREI **BIOINFORMATICS, GENETICS & GENOMICS**

Created with BioRender Poster Builder